How to create a Minecraft Mod

Lilian Gallon - Igallon@ucsc.edu - University of California, Santa Cruz
September 2019

Keywords: Minecraft, Game modding, Tutorial, Forge API

Summary

Game modding is a growing field of game developing which started from the initiative
of players. When the game itself is not enough, you can improve it by adding your own
functionalities. It is a way to learn coding by having fun. However, it can be difficult to
get into game modding because you need to read a lot of documentation (if you find it)
and know how the game is coded. This tutorial will guide you through your journey on
how to make — your first? — Minecraft mod. You will learn each part of it, from setting
up your Integrated Development Environment to adding your mod in your Minecraft
game. We will also use the latest technologies available at this time. So the tutorial is
taught using Minecraft Forge 1.14.4, GitHub Actions and IntelliJ IDEA 2019!

Intended audience

This tutorial is designed for people with a minimum of knowledge about Computer
Science (Java and data structures). It is not needed to know Oriented Object
Programming, but it will be easier to follow the tutorial by knowing this concept. Some
parts of this tutorial won't be required to create a Minecraft mod, but it will teach you
good programming practices. Continuous Integration and Unit testing are some of
these non-required parts. It is not necessary to have a Minecraft.net account to program
the mod, but it will be mandatory if you want to use it in your own world.

1/22

Style guide

We will use a modern style guide to redact this tutorial. The Google Developer
Documentation Style Guide [1] was chosen as it is adapted to this kind of tutorial. It is
really simple to understand compared to the other ones (Oxford, Chicago and APA for
example). Moreover, the theme is clean and the tone has to be conversational, friendly
and respectful without being overly colloquial or frivolous.

System requirements

Recommended means that this tutorial has been made using this technology. If a
technology is not cited, it means that it is not working (ex: Forge 1.14.4 is incompatible
with Java JDK >11) or not tested.

Operating System:
- Windows 10 (recommended)
- Linux (part 2.1.1 differ a lot, slight changes for part 2.1.2 and 2.1.3)
- MacOS (same as Linux)
Java JDK:
- JDK 1.8 (recommended)
- JDK 9 (Not maintained anymore, slight changes for part 2.1.2)

- JDK 10 (Not maintained anymore, slight changes for part 2.1.2)

Minecraft Forge:

- 1.14.4 (recommended)

- 1.14.x (Unknown issues may occur)

- 1.13.x (Slight changes for part 2.1.3, and 3.)
Integrated development environment:

- IntelliJ IDEA 2019.x (recommended)

- IntelliJ IDEA 2018.x (Slight changes for part 2.1.3)

- Eclipse Neon (parts 2.1.2 and 2.1.3 differ a lot)

2/22

Table of contents

Summary

Intended audience
Style guide

System requirements
Table of contents

1. Introduction
1.1 Introduction to Game Modding
1.2 Introduction to Minecraft Forge API
1.3 Introduction to Github

2. Setting up your development environment
2.1 Java JDK, IntelliJ IDEA and Forge
2.1.1 Java
2.1.2 IntelliJ IDEA
2.1.3 Forge with IntelliJ IDEA
2.1.4 How to change mod details
2.1.5 Hello World
2.1.6 Mod exportation
2.1.7 Sending Codebase to GitHub

2.2 Continuous Integration using GitHub Actions

3. Mod programming
3.1 How to create your first item
3.2 How to create a custom sword
3.3 How to create a custom recipe

3.4 How to change the world generation to include a custom ore

4. Installation
5. Conclusion

Resources

-— e

O 0O 00 0 OO W NN

I I
NN = = O 0

N IR W
No AW W

N N {
© VW Vv

3/22

References

Appendices
Appendix 1: How to change JAVA_PATH to Java JDK 1.8
Appendix 2: Starter code
Appendix 3: ToolMaterialList enum

4/22

20

20
20
21
22

1. Introduction

1.1 Introduction to Game Modding
Prerequisites: none

Game modding is a growing field of game development. The term "mod” comes from
"modification” or "modify”. It is a domain where the participants use their skills to alter a
video game. It can be adding new features, fixing issues, or even improving existing
functionalities.

Modding became relatively popular with the game Doom (1993) [2]. The company Id
Software separated the media files from the main program and made it accessible for
users [3].

Before, it was a form of hacking, where the game was altered without the company's
consent [4]. Then, over the next few years, game development companies realized that
modding was beneficial for their games, and they started releasing tools to help
modders. A tool can have different forms. Sometimes, it is an in-game editor that the
player can use to create new quests, new missions or new environments. It can also be
adapted for experimented developers as an API that they can use to alter the code base.

1.2 Introduction to Minecraft Forge API

Prerequisites: none

Minecraft Forge is an Open-Source modding API developed and maintained by the
community [5]. Forge contains numerous hooks' into the Minecraft game engine,
allowing us to create mods with a high level of compatibility [6]. The Minecraft Forge
API was entirely re-written for the Minecraft 1.13 release [7]. It means that most of the
tutorials are now outdated.

" A hook can be seen as a wire between Forge APl and Minecraft where the data pass through

5/22

1.3 Introduction to Github

Prerequisites: none

Github is a company that provides hosting for software development. It is based on Git,
a version control system [8]. We will use this service to keep track of changes in our
project. If you plan to use GitHub, you need to follow these steps:

1. Create an Account on https://github.com/. The Free plan is enough.
2. Create a Repository on https://github.com/new. The Repository Page appears.

Owner Repository name *

b yourname -~ / nickel-mod v
Great repositery names are short and memorable. Need inspiration? How about miniature-doodle?
Description (optional)

A mod introducing the Nickel ore in Minecraft.

@ Public
S Anyone can see this repository. You choose who can commit.

Private
You choose who can see and commit to this repository.

Skip this step if you're importing an existing repository.

Initialize this repository with a README
This will let you immediately clone the repository to your computer,

Add .gitignore: None v Add 3 license: GNU General Public License v3.0 v | ()
Figure 1. Creating a GitHub repository

3. Click Clone or download, and copy the https link. We will use it later.

% Note: If you are a student, you can have the Pro plan for free (and a bunch of tools with it). Go

to
https://education.github.com/discount_requests/new and fill the form.

Now that your repository is created, you need to install Git on your computer, so that it
will recognize the git command in the terminal.

1. Download Git for windows on https://qitforwindows.org/.
2. Install Git for windows.

6/22

https://github.com/
https://github.com/new
https://education.github.com/discount_requests/new
https://gitforwindows.org/

Your computer knows what git means, SO you can use it.

Create a Folder anywhere in your computer. Open it. A Window appears.
Right click in the Window. Select Git Bash here. A Terminal appears.
Type git init in the Terminal. It will create git files.

=

Type git remote add origin https-link by replacing nttps-1ink by the https
link of your repository that you copied earlier. It should look like this:

$ git remote add origin https://github.com/YOURNAME/nickel-mod.git

5. Type git pull origin master. If you ticked Initialize this repository with a
README, and if you selected a license, you should respectively see a file called
LICENSE and README.md.

You will only use basic commands for this tutorial. Here are the commands that you will
use:

- git add .:To stage changes of all the files (except the ones in the gitignore file).

- git commit -m “message”: The commit message. “added a new block”, or “fixed
world generation” for instance.

- git push origin master: TO send the changes to the git repository, on the master
branch.

You can also use the git plugin integrated in IntelliJ IDEA, but it is important to know
how the commands work.

% Note: If you want to know more about GitHub, there is a good animated guide on how to use it on
https://quides.github.com/activities/hello-world/

7/22

https://guides.github.com/activities/hello-world/

2. Setting up your development environment

2.1 Java JDK, IntelliJ IDEA and Forge

Prerequisites: none

2.1.1 Java

As we use the most recent technologies in each domain, we will use the latest Java JDK
version which is 13.

1. Go to https://www.oracle.com/technetwork/java/javase/downloads/index.html
and download Java JDK 8. According to the time when you read this tutorial, you

may need to create an Oracle account.
2. Installit.

2.1.2 IntelliJ IDEA

IntelliJ IDEA is the software with which you will write the mod. It is one of the most used
in Java development.

1. Go to https://www.jetbrains.com/idea/download/ and download IntelliJ IDEA
Community.
2. Install it.

% Note: If you are a student, you can have the Ultimate version for free. It includes almost all of
the Jetbrains softwares. Go to https://education.github.com/discount_requests/new.

2.1.3 Forge with IntelliJ IDEA

Now that you have everything installed, it is time to download forge and to integrate it
with IntelliJ IDEA.

1. Go to https://files.minecraftforge.net/. On the side, click 1.14 > 1.14.4.

8/22

https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.jetbrains.com/idea/download/
https://education.github.com/discount_requests/new
https://files.minecraftforge.net/

2. In the middle of the page, click on Mdk in the “Download recommended” panel.
You will get a .zip File.

3. Open this .zip File, and extract everything in your Project Folder. If you did not
follow 1.3: Introduction to GitHub, then create a new Project Folder.

4. Open IntelliJ IDEA. Click on Open.

g

IntelliJ IDEA

2 Create New Project

¢ Configure - GetHelp

Figure 2. IntelliJ IDEA startup window

% Note: You can use the Material Theme, by clicking Configure > Plugins on figure 2. Then search
for Material Theme Ul, and click Install. Then, follow the instructions.

5. Open IntelliJ IDEA. Click on Open. Then browse to your Project Folder, and select
build.gradle. Click OK > Open as a project.

6. IntelliJ will download files. Wait for it to end.
Click File > Settings. A window will appear. Click Build, Execution, Deployment >
Build Tools > Gradle. Make sure that Gradle JVM is set to “1.8".

8. Click File > Project Structure. A window will appear. Click Project.
8.1. Make sure that Project JDK is set to “1.8".
8.2. Make sure that Project language level is set to “8 - Lambdas, type

annotations etc.”. Click on OK.

9. At the bottom of the IntelliJ window, click Terminal. Type gradiew

genIntellijRuns.
10. In IntelliJ IDEA, next to the run button, click Add Configuration. In the left panel,

click Application > runClient. Next to “Use classpath of module”, select
nickel-mod.main.

(1) caution: If you receive an error while running “gradlew genintellijRuns” saying “Found java
version {x}. Minimum required is 1.8.0_101 [...]", it means that the JAVA_PATH variable is not

9/22

set correctly. It can happen if you already had installed Java. Go to Appendix 1 at the end of the
tutorial. Then, restart IntelliJ IDEA.

Now you should be able to run Minecraft by clicking on Run. In the game, click Mods >
Example Mod. You can see the details of your mod!

A\ Warning: The game sound may be loud. You can change it by clicking Options > Music &
Sounds

2.1.4 How to change mod details

You probably want to say that it was you that made the mod. Let's see how you can do
that.

Figure 3. Default mod details

In Intellid IDEA, open the file src/main/resources/META-INF/mods.toml. Here are the
fields that you need to change. We won't cover everything, only what is needed for the
Nickel mod.

Field Value

issueTrackerURL https://github.com/YOURNAME/nickel-mod/issues

modId nickelmod

version 0.1

displayName Nickel Mod

displayURL https://github.com/YOURNAME/nickel-mod
credits Tutorial of Lilian Gallon on game modding
authors YOU

10/22

description

A mod introducing the Nickel ore in Minecraft.

Make sure to change dependencies.examplemod tO dependencies.nickelmod. Also if you
are not using updatedJsonURL and logoFile, comment them with “#” or delete them if

you prefer.

2.1.5 Hello World

You are almost done! The last task to do is to create your own source files.

1. Delete the example mod. To do so, delete the folder named com in src/main/java.
2. Right click on Java, then click New > Package. Type yourname.nickelmod. Click

OK.

3. Right click on nickelmod, then click New > Java Class. Type nickelMod. Press the

Enter key.

4. Copy the code of Appendix 2 into the NickelMod class.

You should be able to run the game. You will see the new mod details and some
messages in the terminal coming from your mod. You are finally done! You can start

programming your own Minecraft 1.14.4 mod!

2.1.6 Mod exportation

You will need to update a file with your mod information.

1. InIntelliJ IDEA, open build.gradle. Then, update those fields:

Field

version

group

archiveBaseName

Value

0.1

yourname.nickelmod

nickelmod

2. Type gradlew build in aterminal.

Description

The version of your mod (can be different than
the one in mods.toml)

The package of your mod.

The name of your build file.

The file created will be called {archiveBaseName}-{version}.jar and is available in the

pbuild/libs/ folder.

11/22

2.1.7 Sending Codebase to GitHub

Now that everything is ready, you can send your changes to GitHub. To do so, you need
to type:

- git add . -to stage all the changes.
- git add commit -m “added codebase” - to commit them,

- git push origin master - to send them to GitHub. If you used the https link, you
will need to enter your GitHub credentials. Otherwise you can learn how to use an
SSH key [9].

2.2 Continuous Integration using GitHub Actions
Prerequisites: 1.3 Introduction to GitHub and 2.7 Java JDK, IntelliJ IDEA and Forge

You can make sure that your master branch contains a “stable” version by building it
every time new code is pushed.

On your GitHub page, click on the Actions tab. Search for “Gradle” and click Set up this
workflow. It should use Java JDK 1.8 by default. You need to change the “run” line by
chmod +x gradlew ; ./gradlew build. YOou can customize the build name, for example,
let's use “Build MC1.14.4". Once that you are done, click Start commit with “created
gradle.yml”. You can add a shield in your README.md by writing:

'[build status] (https: github.com/YOUR-NAME/nickel-mod/workflows/Build%20MC]1,.14,.4/badge,.svqg)

It will show this badge in your README: (SRR e e

12/22

https://github.com/YOUR-NAME/nickel-mod/workflows/Build%20MC1.14.4/badge.svg

3. Mod programming

3.1 How to create your first item

Prerequisites: 2.1 Java JDK, IntelliJ IDEA and Forge

Let's create the nickel ore. First, you will need to create few resource files. Go

src/main/resources/assets/nickelmod. Here, you need to create a few files.

Path

lang/en us.json

models/item/nickel.json

textures/item/nickel.png

Value
{
"item.nickelmod.nickel”: "Nickel"
}
{
"parent": "item/generated",
"textures": {
"layer@": "nickelmod:item/nickel"
}
}

Go to the GitHub repository to find the nickel file.

to

The first file tells to the game that for the English (US) language, the item name should
be “Nickel Ore”. The second one tells to the game that the item model is located in
item/nickel_ore. The last one is just the item texture.

Now that all the resources are ready, we can start coding. In nickelmod, create a new
package called “lists”, and then create a class called ItemList inside. This is a simple
class where we will list all the custom items. Here is the code.

import net.minecraft.item.Item;

public class ItemList {
// The item name must be lower case!
public static Item nickel;

13/22

Then, we need to say to Forge that we created a new item. Go in your main class
(NickelMod), and write this function:

@Mod . EventBusSubscriber(bus=Mod.EventBusSubscriber.Bus.MOD)
public static class RegistryEvents {
// Function called during the items’ registration
@SubscribeEvent
public static void registerItems(final RegistryEvent.Register<Item> event) {
event.getRegistry().registerAll(
ItemList.nickel_ore = new Item(
// put all your custom Items here (separate them with a comma)
new Item.Properties().group(ItemGroup.MATERIALS)).setRegistryName(location("nickel™))

)s
}

private static ResourcelLocation location(String name) {
// It tells where the resource is located
return new ResourcelLocation(MODID, name);

During the Forge registration, your function “registerltems” will be called. Then you need
to use registerAll(...) with the new item to add it in the game. The location(...) function
will be used multiple time in the future.

Now you can run your game, and you should be able to see the new item in your creative
inventory in the miscellaneous tab. Note that you can change the item group by
changing ItemGroup.MATERIALS. Finally, you can push your changes to GitHub.

3.2 How to create a custom sword
Prerequisites: 2.1 Java JDK, IntelliJ IDEA and Forge, 3.1 How to create your first item

Our new sword has to be useful in the game. Let’s say that it will have a big attack
damage, but a slow attack speed. The only difference with the 3.1 part is that you need
to specify the item’s properties.

You will create a ToolMaterialList. It will contain the properties of all the tools using
Nickel as material. In this tutorial, we will only learn how to create a Sword, but it is the
same steps to create other tools (pickaxe, hoe, shovel, ...).

14/22

Here are all the properties of the nickel material.

Field Value Description

attackDamage 5 The damage of the nickel tools.

efficiency 9 The efficiency of nickel tools

durability 800 The durability of your tools.

harvestLevel 3 It means that you can harvest blocks that usually require

diamond tools. It will only be useful if you decide to create a
nickel pickaxe.

enchantability 25 You have more chances to have good enchantments if this
value is low, the biggest value being 41, and the lowest 0.

And here are the properties of swords:

Field Value Description
attackDamagelIn 4 The sword attack damage
attackSpeedIn -3 The sword attack speed

Here are how the sword speed and the sword damage are computed:
- Attack speed: 4 + {tool attack speed}
- Attack damage: 1 + {rool attack damage} + {sword attack damage}

Now that you know all the properties, you can create the ToolMaterialList enum in the
1ists package. The code is available in Appendix 3. Then, you can create a new 1temin
TtemList called nickel sword. Finally, you need to register the new sword:

ItemList.nickel_sword = new SwordItem(ToolMateriallist.nickel_sword, 4, - 3, new
Item.Properties().group(ItemGroup.COMBAT)).setRegistryName(location("nickel_ sword"))

Make sure to separate the items with a comma.

15/22

You are not done yet! You need to add some resources about the sword. It is the same
thing as for the custom item. Here are the values:

Path Value
lang/en us.json {
"item.nickelmod.nickel_sword": "Nickel
Sword"
}
models/item/nickel sword.json {

"parent”: "item/handled",
"textures": {
"layer@": "nickelmod:item/nickel_sword"

}
}

textures/item/nickel sword.png Go to the GitHub repository to find the ore file.

3.3 How to create a custom recipe
Prerequisites: 3.1 How to create your first item, 3.2 How to create a custom sword

This is easiest part of the tutorial. You just need to create one file inside a new directory
called recipes. Here is the path: src/resources/data/modid/recipes

Then create a file name nickel sword.json. The content should be like this:

{
"type": "minecraft:crafting_shaped”,
"pattern":
[
g,
g,
ngu
1,
"key": {
"I": { "item": "nickelmod:nickel"},
"S": { "item": "minecraft:stick"}
})
"result": { "item": "nickelmod:nickel_sword"},
"count": 1
}

16/22

But what are these fields?

- type: specifies that this is a crafting recipe.

- pattern: specifies the crafting pattern

- key: specifies to what “I” and “S” refer to

- results: specifies what this recipe creates

- count: specifies how many “result” we have, in this case, only one sword.

It should be working without changing anything in the code.

3.4 How to change the world generation to include a custom ore
Prerequisites: 2.1 Java JDK, IntelliJ IDEA and Forge, 3.1 How to create your first item

As an exercise, you have to create your own Nickel Ore. You can find the Nickel Ore
image on the tutorial’s Github (see Resources). Here are a few tips:

1) You will need to use a function called registerBlocks instead of registeritems

The block registration should look like this:

BlockList.nickel_ore = new Block(Block.Properties.create(Material.ROCK).hardnessAndResistance(50f,
3.0f).harvestLevel(3).sound(SoundType.METAL)).setRegistryName(location("nickel_ore"))

With:

- Material.ROCK referring to the material type, so we need a pickaxe to harvest it.

- Hardness and resistance being 50 (the same as an Obsidian) and 3 (the same as
a regular Ore).

- Harvest level specifying the tool needed to mine it. Here, we need a diamond tool
(or better).

2) You will need to use a class called B1ockList instead of 1temList
3) The nickel_ore.json should be located in models/block, and should contain:

"parent"”: "block/cube_all",
"textures": {
"all": "nickelmod:block/nickel _ore"
}
}

17/22

4) Then, for a block, you need a new .json located in the “blockstates” folder which
is next to the lang folder. Then write this:

{

"variants": {
"": { "model": "nickelmod:block/nickel ore" }

}
}

It says to use the model nickel_ore for the default blockstate.

A Warning: Make sure to create a new Item called nickel_ore, otherwise we won't be able to use
The block in the game! Follow 3.1 but with the nickel_ore. If you are struggling, you can find the
code on the github project page.

Now that you have the new Nickel Ore, we can generate it in the world generation. You
need to edit the function commonsetup that you created in the beginning of this tutorial.

In the code below, we specify that we want the nickel ore to generate between layers 50
and 100. Also, we want 10 of them maximum per chunk, and they can appear at most in
veins of 4.

for(Biome biome : ForgeRegistries.BIOMES) {
biome.addFeature(
GenerationStage.Decoration.UNDERGROUND_ORES,
Biome.createDecoratedFeature(
Feature.ORE,
new OreFeatureConfig(
OreFeatureConfig.FillerBlockType.NATURAL_STONE,
BlockList.nickel_ore.getDefaultState(),
4 // vein size (how many ores are attached at most?)
))
Placement.COUNT_RANGE,
new CountRangeConfig(

10, // max number of block in this layer -> probability
50, // minimum height

0, // height base

100 // max height

)5

18/22

4. Installation

Prerequisites: having a minecraft.net account (~$27) 2. Setting up your development environment and 5.1
Forge installation

First, create a minecraft.net account and install Minecraft. Now, download Forge 1.14.4
Installer on https://files.minecraftforge.net/ and install it. In your Minecraft launcher,
change the profile, and select the one with forge.

Now, press windows key and R key in the same time. Type “%appdata%”. Go to
.minecraft and create a folder named “mods”. You can drag your Minecraft mod in this
folder.

5. Conclusion

Game modding sounds difficult until you start working on it. You learn to use a new
language, to understand how a game code works, and you discover all the possibilities
that it offers you. Personally, game modding helped me to learn a lot of concepts in
Computer Science before having classes on it. It also pushes you to work on your own,
to fix your issues, to find some hacks to make your mod working. All of these skills are
really important in Computer Science, and it will help you in your studies.

Resources

- Tutorial code:
- If you get stuck, the code used in the tutorial is right here
- https://qithub.com/shorebre4k/nickel-mod

- Minecraft Gamepedia :

- You can find the properties of game objects (i.e. pickaxe, world generation, ...)
- https://minecraft.gamepedia.com/

- Forge Forums:
- If you need help, this is the official forum, and there is a lot of activity
- https://www.minecraftforge.net/forum/

19/22

https://files.minecraftforge.net/
https://github.com/shorebre4k/nickel-mod
https://minecraft.gamepedia.com/
https://www.minecraftforge.net/forum/

References

[1]: Google, “Google Developer Documentation Style Guide.”, Online, accessed 13-November-2019
https://developers.google.com/style

[2]: Sotamaa, Olli. “On modder labour, commodification of play, and mod competitions.”
First Monday. 12 (2007): n. pag. Print https://journals.uic.edu/ojs/index.php/fm/article/view/2006

[3]: Sotamaa, Olli. “When the Game Is Not Enough: Motivations and Practices Among Computer Game
Modding Culture.”, Games and Culture 5.3 (2010): 239-255.
https://journals.sagepub.com/doi/abs/10.1177/1555412009359765

[4]: Hong, Renyi. “Game Modding, Prosumerism and Neoliberal Labor Practices.” International journal of
communication (Online) (2013): n. pag. Print. https://ijoc.org/index.php/ijoc

[5]: Gamepedia contributors, “Mods/Forge”, Online, accessed 27-November-2019
https://minecraft.gamepedia.com/Mods/Forge

[6]: Gamepedia contributors, “Minecraft Forge”, Online, accessed 27-November-2019
https://ftb.gamepedia.com/Minecraft_Forge

[7]: LexManos, “1.13 Announcement.”, Online, accessed 27-November-2019
https://qgist.github.com/LexManos/76765455e6938892aed59544a9061321

[8]: Wikipedia contributors, “GitHub”, Online, accessed 27-November-2019
https://en.wikipedia.org/w/index.php?title=GitHub&01did=928056962

[9]: Github help, “Connecting to GitHub with SSH”, Online, accessed 03-December-2019
https://help.github.com/en/github/authenticating-to-github/connecting-to-github-with-ssh

Appendices

Appendix 1: How to change JAVA_ PATH to Java JDK 1.8

It will be used by gradle to run its scripts.

1. Type Environment in the windows search bar. Click on Edit the system
environment variables.

2. Under System variables, click New.
a. Variable name: gava paTh
b. Variable value: c:\pProgram Files\Java\jdk1.8.0 231 - It can be different if
you modified the installation folder, or if you are using another JDK 1.8
version (here it says 231).

20/22

https://developers.google.com/style
https://journals.uic.edu/ojs/index.php/fm/article/view/2006
https://journals.sagepub.com/doi/abs/10.1177/1555412009359765
https://ijoc.org/index.php/ijoc
https://minecraft.gamepedia.com/Mods/Forge
https://ftb.gamepedia.com/Minecraft_Forge?redirect=no
https://gist.github.com/LexManos/76765455e6938892aed59544a9061321
https://en.wikipedia.org/w/index.php?title=GitHub&oldid=928056962
https://help.github.com/en/github/authenticating-to-github/connecting-to-github-with-ssh

Appendix 2: Starter code

Make sure to change the first line with your package name. Also, do not forget to

change the modid if you use another one.

package yourname.nickelmod;

import net.minecraftforge.common.MinecraftForge;

import net.minecraftforge.fml.common.Mod;

import net.minecraftforge.fml.event.lifecycle.FMLClientSetupEvent;
import net.minecraftforge.fml.event.lifecycle.FMLCommonSetupEvent;
import net.minecraftforge.fml.javafmlmod.FMLJavaModLoadingContext;

import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;

// This is the mod id. It must be the same as the one in mods.toml.
@Mod("nickelmod")
public class NickelMod {

public static NickelMod INSTANCE;
public static final String MODID = "nickelmod";
private static final Logger LOGGER = LogManager.getLogger(MODID);

public NickelMod() {
INSTANCE = this;

// We need to call these two functions to make sure that setup and clientRegistries are called

FMLJavaModLoadingContext.get().getModEventBus().addListener(this::commonSetup);
FMLJavaModLoadingContext.get().getModEventBus().addListener(this::clientSetup);

// It tells to Forge that this mod exists!

MinecraftForge.EVENT_BUS.register(this);

private void commonSetup(final FMLCommonSetupEvent event) {
LOGGER.info("Hello from commonSetup!");

private void clientSetup(final FMLClientSetupEvent event) {
LOGGER.info("Hello from clientSetup!");

21/22

Appendix 3: ToolMaterialList enum

Make sure to change the first line with your package name.

package yourname.nickelmod.lists;

import net.minecraft.item.IItemTier;
import net.minecraft.item.Item;
import net.minecraft.item.crafting.Ingredient;

// An enum that set the properties for a material (in this case the Nickel one)
public enum ToolMateriallList implements IItemTier {

// We create the nickel sword properties here (the basic ones)
// Some properties are useless for a sword (ex: efficiency)
nickel_ sword(5.0f, 9.0f, 800, 3, 25, ItemList.nickel);

private float attackDamage, efficiency;
private int durability, harvestLevel, enchantability;
private Item repairMaterial;

// We init all the attributes in the constructor
private ToolMateriallist(float attackDamage, float efficiency, int durability, int harvestLevel, int
enchantability, Item repairMaterial) {
this.attackDamage = attackDamage;
this.efficiency = efficiency;
this.durability = durability;
this.harvestLevel = harvestlLevel;
this.enchantability = enchantability;
this.repairMaterial = repairMaterial;

@Override
public float getAttackDamage() { return this.attackDamage; }

@Override
public float getEfficiency() { return this.efficiency; }

@Override
public int getEnchantability() { return this.enchantability; }

@Override
public int getHarvestLevel() { return this.harvestLevel;}

@Override
public int getMaxUses(){ return this.durability; }

@Override
public Ingredient getRepairMaterial() { return Ingredient.fromItems(this.repairMaterial); }

22/22

